
An approach to a maintainable OS-solution based on
embedded Linux, safe and secure
and the fundamental role of proper lifecycle management.

Michael Armbruster, Thomas Brinker, Michel von Czettritz, Heike Jordan
safe and secure embedded Linux Solutions

emlix GmbH
37073 Göttingen, Germany

solutions@emlix.com

Abstract—The innovative embedded OS-solution described
within this paper has been motivated by customers asking for a
“safe” embedded Linux. “safe” is understood as “functionally
safe” acc. to an established standard, specifically ISO26262 or
IEC61508. The innovation does not only implement its property
on Functional Safety, but also on Cybersecurity which is needed
by further guidelines, regulations and standards (e.g. “Cyber
Resilience Act” with guidelines such as TR-03183 or IEC62443).
The field of tension in between Functional Safety, Cybersecurity
and long-term maintenance is explained. As a second field of
tension, the impact from Linux’ architectural nature and design
practices on the attempt to make it safe is broken down.
However, the innovative approach derived from requirements
and challenges follows a different strategy. Rather than making
Linux safe, the OS-solution ensures a dependable data-space for
safety-related applications up to SIL 2/ ASIL B. This makes this
solution suitable for almost any regulated industry, including
automotive. It is based on a decoupling of the lifecycle of the
Linux kernel from that of other software elements. By virtue of
this, its maintenance and patching can be done with minimal
effort while maintaining its property on Cybersecurity. The
technological concept is based on a "supervisor" software layer
that detects and prevents events that are able to adversely effect
the dependability of the data-space for safety-related
applications. The supervision of the Linux kernel is made
possible thanks a hypervisor that leverages functionalities
provided by the hardware platform. A minimum viable product
has been built, is functional and has been positively assessed by
an independent assessor. The paper explains, how this OS-
solution based on embedded Linux enables the utilization of
Linux in context of functionally safe and secure systems,
effectively and efficiently.

Keywords—embedded Linux, Functional Safety, Cybersecurity,
maintenance, hypervisor, supervisor, SIL 2, ASIL B, safety
applications, Kernel, safe Linux

I. INTRODUCTION

Software defined functionality is on the rise in various
industries. Very often those hold requirements associated with
Functional Safety and Security. Linux would be an ideal fit as
an embedded operating system. And it comes with a large
multiplicity of customizable features, established reliability,
and stability across various use cases. But as Linux has not
been developed with the prescriptions on safety-standards in
mind: what about safety and how to build safe and secure solu-
tions based on embedded Linux that meet the requirements of
accepted standards and regulations, such as e.g., IEC61508,
ISO26262, or IEC62443 and “Cyber Resilience Act” with
guidelines such as TR-03183?

This paper describes a solution that enables the industry to
make use of the benefits of open source software within an
embedded OS-solution for safety-related applications up to SIL
2 according to EN 61508 and up to ASIL B according to
ISO 26262. It is based on a "supervisor" software layer (named
Supervisor) that detects and prevents undesirable behaviors of
the Linux kernel. This supervision over the Linux kernel is
enabled by a Hypervisor that leverages functionalities provided
by the hardware platform. The approach decouples the lifecy-
cle of the open-source Linux kernel, from that of other soft-
ware elements, including the Supervisor, the Hypervisor, user-
land libraries, and the application software itself, all of which
must comply with applicable safety standards.

But safety does not come without Security. And safe solu-
tions need an adequate security concept along with its technical
implementation. This mandates i.e., a modular lifecycle-man-
agement, a secure boot chain, or continuous integrity checks.
CVE security monitoring as well as the supplementary Mainte-
nance Monitoring need to accompany the embedded Linux
solution.

www.embedded-world.eu

mailto:solutions@emlix.com

II. CORE REQUIREMENTS/ REQUESTS, THAT MOTIVATE
LINUX

Modern control systems, and more generally cyber-physical
systems, must address many challenges originating from the
ever increasing complexity and diversity of the functionalities
to be implemented and from the technological advancement of
the hardware. And this comes with a lot of challenges, that call
for an adequate operating system, and Linux seems to tick all
the boxes (acc. to [1]):

• open source with no vendor lock-in and the flexibility
in utilization

(e.g. in context of export control as outlined by the
Linux Foundation [2], rule on „Securing the Informa-
tion and Communications Technology and Services
Supply Chain: Connected Vehicles“ [3] as published
by the US Bureau of Industry and Security or product
liability as reported in „ProdHaftRL“ resp. Directive
(EU) 2024/2853 [4])

• broad support for diverse hardware

• rapid evolution and continuously maintained

• built for performance and Security

• broad API and a huge variety of features that support
application development

• established tools and build infrastructures

• broad utilization in the most diverse and demanding
contexts providing an absolutely non-episodical evi-
dence of its reliability

• huge and extremely skilled community-base

While in the past connectivity of all embedded devices and
machines has been rarely established in some industries, digital
elements now typically do have a type of connectivity such as
Bluetooth, WiFi, LAN, USB or other. But even those devices,
that lack an intended interface to a networked system can be
subject to interference via physical connector on PCB level.

This leads to the omnipresent risk of so called Cybersecu-
rity attacks/ cyberattacks, Acc. to [11] this is understood as
“any intentional effort to steal, expose, alter, disable, or destroy
data, applications, or other assets through unauthorized access
to a network, computer system or digital device.” And as
awareness on this grows, several regulations, standards or
guidelines arise or former ones are refined and extended. As a
reference only and without listing all regulations and guidelines
across all industries, it is worth to mention here IEC62443 [5]
but also the so called Cyber Resilience ACT [7] with its na-
tional interpretations and technical regulations as provided by
BSI ([8], [9]).

A major obligation that comes with this is vulnerability
handling, which aims on freedom from known vulnerabilities

for digital elements throughout the element’s support period
acc. to [9]. Vulnerability handling further needs to include
some basic requirements. Selected ones which motivate the
discussion herein, are (simplified and derived from [9]):

• The manufacturer1 needs a process to identify vulner-
abilities affecting the TOE2.

• The manufacturer needs a documentation for vulnera-
bilities, its impact and how they can be mitigated.

• The manufacturer needs to mitigate vulnerabilities in
a timely feasible manner .

This responsibility along with its obligations is not new or
even unknown when working in regulated context. Those de-
veloping and producing safety-related components and systems
are used to this. And a lot of embedded systems are used in
safety-related context. Acc. to the prescriptions of the safety
standard in use, many measures have to be put in place to
show, that the component or system does exactly what it is in-
tended to do but nothing else. The rigor to which those mea-
sures are selected and implemented depend on the risk the cor-
responding system function can cause commonalities and dif-
ferences in between Functional Safety and Security which are
relevant to this article, can be summarized as follows:

• Both, Functional Safety and Security as a system
property need to be managed throughout the lifecycle
of the component or product from engineering to dis-
posal.

• Both, safety-engineering and security-engineering
work with assumptions, model the real-world com-
plexity and validate both throughout the development
lifecycle. An assessment is typically done before
putting a product onto the market and a a certification
body is involved 3.

• Update and modification typically needs re-assess-
ment done by an assessment body.

• Continuous modification is not intended to be done
for functionally safe elements. But for secure ele-
ments it is required: assumptions made on an ele-
ment’s context will change continuously especially in
context of Security. E.g., the model on how attackers
behave and the tools they have will continuously
evolve. Vulnerabilities will exploit and as such, risk
needs to be re-assessed and modifications be made
throughout an elements lifetime.
As pointed out in [10], that in the following years AI
will further impact the threat landscape. It will change
as „malicious actors are launching attacks at machine
speed and scale“.[10] further emphasizes, that security
measures need to „evolve in tandem with the the so-
phistication of attackers“.

1 “The manufacturer” in particular and further roles in general are defined in [6], book 1, section 3.3.1.
2 TOE: Target of Evaluation as defined in [6], book 1, section 3.2.
3 Standards and regulations need to be considered with care as there are different level of rigor also defined for assessments and/

or audits (e.g. as defined in [6], book 1-1, section 3.2.10.).

As an essence from what has been described before and for
what is relevant throughout this paper, three key-properties
need to be balanced, and are relevant to an OS-solution based
on embedded Linux:

• Functional Safety,

• Cybersecurity, and

• long-term Maintainability

And while Linux is known for being well long-term main-
tained and designed for Cybersecurity, the lack of a safety-cen-
tric focus throughout its design and development as well as the
area of conflict in between continuous maintenance and Func-
tional Safety need to be addressed.

III. AREAS OF CONFLICT WHEN USING LINUX IN HIGHLY
REGULATED CONTEXT

A. Functional safety and Linux

Linux has not been developed with regulatory requirements
on Functional Safety in mind. While domain-specific solutions
are available, there has not been a product solution available
that has received a positive and very far-reaching assessment
from a certification body which applies to both EN 61508 (SIL
2) and ISO 26262 (ASIL B, SEooC).

Whether it is machinery, railway signaling, automotive,
biomedical, or even home appliances, any domain is subject to
the prescriptions of standards, norms, regulations, and also
laws, with which the Linux development cycles did not com-
ply. There has been no approach to maintain any claim on
compliance with each update issued, which happens quite fre-
quently and which is one of the advantages of Linux (acc. to
[1]). Two key issues we want to point out herein are:

• argument and evidence on process compliance

• argument and evidence on freedom from interference
in between Linux and safety-relevant userland appli-
cations

note: this implies also freedom from interference in
between DMA [12] devices and userland applications.

Unfortunately, there has been no generic solution available
at present that shows process compliance of Linux to any stan-
dard or regulation on functional safety with all its lifecycles,
especially architecture, design and modification although vari-
ous companies and consortia look at different aspects (e.g.,
ELISA [14] and [13], opentech [15], RedHat [36], Distributed
and Embedded System Lab [16])4.

Various attempts made or being made to show correctness
and freedom from interference often share a common approach
that can be summarized as one or the other of the many flavors
of “reverse engineering” (as mentioned in [1]).

Following the explanations as given in [1], the common
idea mostly is, although with different levels of sophistication,
is to demonstrate by analysis and testing that Linux “does what
it says on the tin”, with the added difficulty that:

• Linux does not have the “tin” where to read its in-
tended functionalities, meaning that the design infor-
mation is sparse and distributed and does not guaran-
tee its completeness and correctness and

• Linux is designed for performance and Security. It is a
huge blob of software. The Linux (its kernel) is mono-
lithic. Its services run in a single address space and as
such they do have full access to the memory. This im-
plies kernel-memory, device-memory but also mem-
ory assigned to userland processes. This access is im-
manent to the nature of Linux. While such a design
comes with the advantage of performance (amongst
others), it is close to impossible (not in theory but
practically) to show, that the Linux kernel does not
adversely effect userland processes without any fur-
ther measures. awhile maintaining its main properties:
performance and Security.

Such an approach is labor-intensive and time-consuming:
just to name the most obvious issue, the almost infinite number
of internal states of Linux requires an extremely extensive test-
ing activity and an even more extensive analysis to demon-
strate that such a testing activity is sufficiently exhaustive.

Even assuming that such an approach is successful, it
would need to be repeated each time an update to Linux is is-
sued, which happens quite frequently (and which is one of the
advantages of Linux, as stated above); it is true that an appro-
priate impact analysis could reduce the effort required, but
even such an impact analysis would take time and would be ex-
pensive.

On this basis, area of conflict 1 can be derived: Showing
process compliance, correctness and freedom from interference
for a huge blob of SW as Linux is extremely labor-intensive,
time-consuming and hardly maintainable. Due to the nature of
Linux, the kernel does have full access to userland applica-
tions.

B. Cybersecurity and long-term maintenance while maintain-
ing claims on functional safety

One of the core advantages besides the broad support of
hardware and performance is, that Linux is developed in the
community and continuously maintained. There is no vendor
lock-in. Everybody can look at the sources. And everybody can
contribute. This trait of open source software is one of the mo-
tivators why it is treated differently from various rules/ laws
([2][3][4]).

The Linux kernel has a new version every 8 to 12 weeks.
And developers and researchers all over the world find bugs
and exploits and send fixing patches almost every day to the
Linux source code (see [37] or [38]) which lead to updates, that
are available to all users. Management of these fixing patches
is an established process done by system administrators typi-
cally and it serves the need to maintain Cybersecurity.

4 Design alternatives based e.g. coded processing are not considered here as those approaches differ from the main idea followed
herein: use Linux as is.

www.embedded-world.eu

While this is of great value for all those selling devices,
which have to consider security requirements given in industry-
specific standards, this comes with the following needs:

• continuous re ensuring Functional Safety

• continuous re ensuring Cybersecurity acc. to stan-
dards, regulations and guidelines

This is because any change can adversely effect the safety
argument and the related supporting evidence on Functional
Safety or Cybersecurity5 and comes with the risk to add unin-
tended functionality within the usage profile/ assumed context
for the element under consideration.

It is essential, that the software in use is owned and consid-
ered trustable. It is fit for its purpose/ for use in its assumed
context and asset owners (for role-definition see e.g., [18]) can
claim this with sufficient rigor, qualitatively or quantitatively.
Ownership can be interpreted from a practical and a formal
point of view. Practically, ownership is understood herein as:

• it is known, from where the software comes and
which systematic capability and as such, we know
whether the software fits to its purpose.

• it can be build in a systematic way from source

• it can be modified in a controlled way without break-
ing functionality, regressions and w/o adding unin-
tended features.

• it can be used in a controlled way.

◦ its intended functionality is known by adequate
documentation.

◦ its intended functionality is provided and can be
tested

◦ no unintended functionality is implemented
within the assumed context of use with its tests.

Ownership also comes with the obligation on open source li-
cense compliance. OpenChain 2.1 which is now ISO/IEC
5230:2020 [19], the International Standard for open source
compliance defines processes one has to act upon.

As a consequence, the larger the SW is, that needs continu-
ous maintenance to ensure Cybersecurity, the more labor-inten-
sive and time-consuming it is to do the maintenance. Evidences
needed by arguments on Functional Safety, Security and fur-
ther standards need to be updated, the compliance argument re-
evaluated and eventually even re-assessed by a certification
body.

Area of conflict 2: Continuously maintaining arguments,
analysis and supporting evidence on Functional Safety along
all patches for a huge blob of SW as Linux throughout the life-
time of the corresponding product or component, is extremely
labor-intensive, time-consuming and hardly doable.

IV. PROPOSED TECHNICAL SOLUTION

We are looking for an OS-solution based on embedded
Linux, that implements the need for Functional Safety, Cyber-

security, and long-term Maintenance with reasonable effort.
Not to forget the feature-richness that comes with Linux along
with the aspects mentioned in section II.

A. Basic strategies and derived principle

Rather than following the attempt to show that Linux “
does what it says on the tin” [1], the innovation is based on a
completely different approach compared to established „safety“
approaches. The “burden of the proof” is shifted from Linux to
a “supervision software layer” detecting when Linux does not
behave dependably.

In other words, rather than trying to demonstrate that Linux
is dependable, it is detect when it isn’t.

Fig. 1. The basic principle used to guide the design of the OS solution for
Safety Applications based on Linux

The solution follows the following strategies (acc. to [20]):

• Change the paradigm: use the strength of Linux and
detect when things go wrong rather than trying to pre-
vent faults. Let the kernel run as usual. Do not attempt
to change it. Use it. And instead, “put it into a box”.

• Just indicate once integrity cannot be ensured and al-
low fault-reactions to be added as needed by the
project.

• Focus on an application’s data space. Ensure correct-
ness. Make it a dependable [21] data space.

• Separate lifecycles of all building blocks (Hypervisor,
Supervisor, kernel, userland applications with its li-
braries).

The basic principle is depicted in the following Fig. 1.

B. Basic functional and architectural concept

The solution implemented leverages upon the features of-
fered by advanced hardware to supervise the behavior of
Linux, namely its access to memory and processing resources.

Two main software elements implement this solution ([1]):

• a Hypervisor provides Linux with virtual memory and
computation resources, hence the hypervisor has full
control over the access to those resources by Linux

• a Supervisor software analyses any attempt made by
Linux to access memory or computation resources
and detects when such an attempt is able to adversely

5 The argument with its reference to supporting evidence is typically summarized in assurance cases [17].

High-integrity
application(s)

Linux (Kernel)

Supervise &
legitimate

initialisation
along with read/
write/ execution

access.

Supervise &
legitimate
syscalls.

affect the dependability of the safety function (with
the terms used as in EN 61508).

The Hypervisor with its Supervisor software implement du-
plication of the control structures of virtual memory and com-
putation resources. The representation of the memory map and
the relevant hardware registers, which we call “state of the
System on Chip [31]”, is available twice: high-integrity and
low-integrity. Fig. 2 depicts this duplication in the middle us-
ing the symbol of a database. One is used for non and the other
for safety-related intermediate physical memory with its map-
ping to physical memory. This duplication is done in between
intermediate physical and virtual addresses. While the OS
maintains the virtualization on the level of virtual addresses,
the hardware with the Supervisor maintain the translation of in-
termediate physical to physical addresses.

The terms “high-integrity” and “low-integrity” are used for
convenience throughout this text. “high-integrity” is used to
characterize hardware resources, which are supervised and as
such, for which the Supervisor is used to detect adverse events.
An adverse event happens if any software element other than
high-integrity application(s) itself modifies the data generated,
used or managed by the high-integrity Application(s). “low-in-
tegrity” is used to characterize unsupervised hardware re-
sources.

Once the safety-related application is executed, the high-in-
tegrity representation is used. If not, the low-integrity represen-
tation is used. Access to the high-integrity domain is strictly
controlled. Therefore, the two main SW elements [20]:

• supervise and legitimate user-space initialization with
its processes, for the start user space applications

• separate read/ write/ execute-rights onto memory
pages for kernel and user space applications

• supervise and legitimate any read/ write/ execute at-
tempt on the high-integrity application memory

• supervise and legitimate updates on registers holding
the processor state throughout context switches
caused by switching in between userland applications
and kernel

• indicate any fault detected

C. Main interaction in between HW and SW: multi-level ad-
dress virtualization

As outlined at [20] the concept does heavily rely on virtual
address spaces with its settings and tables for all the transla-
tions which are often called „translation regimes“ [32].

And while the OS controls the set of translations from vir-
tual memory to what the Software sees as physical memory, a
hypervisor can control another set of translations. Those map
the addresses with its settings as seen by the OS to the real
physical address space. With this approach, a so called inter-
mediate physical address space is placed in between the virtual
one and the physical one. This layer is under full control of a

Hypervisor. A much more complete description on this is given
at Arm’s AArch64 memory management Guide [25]. As virtu-
alization does not only focus on memory but on HW in general,
the aforementioned description is also applied to CPU regis-
ters. The supervision of DMA-devices works similarly and de-
mands the corresponding HW-support.

Fig. 2. Two stages of virtualization used as one of the core
HW-features

D. Applicability of the solution

As outlined in [1] the immediate advantage of this is that
the dependability of the safety function performed by a cyber-
physical system does not rely on Linux itself, but on the above-
mentioned two software elements, while at the same time it al-
lows to exploit all the features of Linux.

As a consequence, the effort required to build the safety ar-
gument and the related supporting evidence is reduced, because
only the two above-mentioned software elements are directly
involved, but also the update to a new version of Linux re-
quires a moderate effort and, above all, even if performed in-
correctly it would not affect the safety but only the availability.

Another remarkable advantage of this solution is that it al-
lows to execute both safety-related (supervised) and
non-safety-related (unsupervised) applications at the same time
on the same Linux; the non-safety-related application is like
any other application running on Linux and is not affected or
functionally limited by the presence of the safety-related appli-
cation6.

As such, EB corbos Linux for Safety Applications is the
first and only Linux OS-solution to comply with SIL 2/ASIL B
safety requirements [33]. It comes with at least one execution
environment based on Linux, that supports mixed-criticaly:
low-integrity and high-integrity applications can be executed
next to each other while using the same kernel. And as it is
based on Linux, it opens up the utilization of established tools
and libraries, that fit to the customer’s projects.

6 The ability to execute two software elements that are associated with different levels of criticality on the same HW system is
also called “Mixed Criticality” [34]. The term is typically used on the level of systems. On the level of operating systems,
also the term “Mixed-Criticality OS Environments” is used [35].

www.embedded-world.eu

physical
memory

safety-related
intermediate

physical
memory

non safety-
related

intermediate
physical
memory

Virtualization /physical to intermediate physical) including
control of read/write/execute access

Virtualization (intermediate physical to virtual physical)
including control of read/ write/ execute access

Linux kernel
High-integrity
applications

Maintained and
controlled by OS/

kernel

Maintained and
controlled by

Hypervisor + OS
supervisor

[1] stated that a minimum viable product (which can be
considered a technological demonstrator) has been built and is
functional while an independent assessor has confirmed not
only the dependability of the software, but also that a cyber-
physical system implemented using this solution is able to:

• perform safety functions up to SIL2 according to
EN 61508

• fulfill safety requirements up to ASILB according to
ISO 26262.

This makes this solution suitable for almost any regulated
industry, including automotive; a fully-featured version is cur-
rently being developed.

The user effort required to positively assess a system devel-
oped using the OS solution is reduced to the minimum in terms
of analysis, documentation and testing.

And even for the achievement of higher SILs or ASILs, it
offers a broad range of possibilities that can be exploited on a
project-specific basis.

For more advanced versions, multiple different independent
virtual domains are supported. Also a low level of abstraction
is supported with a virtual domain directly hosted by the Hy-
pervisor. Further virtual domains can be added with a reason-
able effort because their independence is largely covered by the
already achieved positive independent safety assessment.

The above mentioned independent domains further allow to
apply techniques (like, for instance, diversity, redundancy or
cross-check) able to achieve the required level of safety in-
tegrity for the most demanding projects.

Architectural patterns that can be built with this solution
described are briefly described online within a blog-post [22].
The core misconceptions that prevent stakeholders to consider
OS solutions based on Linux for safety related systems are also
analyzed therein.

Fig. 3. Basic software architecture

Fig. 3 depicts the basic architectural setup with the core
building blocks such as Bootloader, Hypervisor and multiple
virtual machines. The virtual machine monitor for the high-in-

tegrity virtual machine is extended with the Supervisor. As
mentioned before, this Supervisor is only used for high-in-
tegrity applications while low-integrity applications maintain
unsupervised.

E. Interplay of lifecycle elements and SW maintenance

Not only the SW-architecture does reflect a high degree of
modularization. It goes hand in hand with the modularization
of the safety argument and the related evidence with the corre-
sponding lifecycles of core building blocks such as Hypervisor,
Supervisor, kernel and userland applications with its libraries.

And as Functional Safety mainly relies on the two SW ele-
ments Hypervisor and Supervisor as described in subsection B,
the effort required to build the safety argument and the related
supporting evidence is reduced, because only the two software
elements Hyper- and supervisor are directly involved.

Asset owners and product suppliers7 are enabled to effi-
ciently and effectively implement vulnerability analysis along
with update management. The corresponding processes can
largely be implemented and operated independently.

Security features known in Linux are available in the op-
tional virtual machine which can operate as gateway. But secu-
rity features can also be enabled within high-integrity virtual
machine with its mixed-criticality user-space domain: non-
safety-related and safety-related features can seamlessly be or-
chestrated and used.

V. SUMMARY ON WHY THE SOLUTION CAN ENABLE
CUSTOMERS, TO USE LINUX IN HIGHLY REGULATED CONTEXT

In December 2024 emlix listed five misconceptions on
Linux and Functional Safety that may deter system and soft-
ware architects from considering Linux and hypervisors as core
building blocks in context of safety related cyber-physical sys-
tems [22]:

• open-source processes and software cannot be used in
context of safety-related systems.

• Linux needs to be assessed as a monolithic software-
blob.

• Virtualization is a source of additional problems, re-
quiring extra efforts for qualification and mainte-
nance, and demands expertise that is rarely available
on the market.

• Each single element of an execution environment in-
cluding its libraries need to be “safe”

• There is only one architectural approach to meet all
functional and non-functional requirements using
Linux

In context of Security it is worth to bring in and emphasize one
more, which is [23]:

• An OS-solution based on Linux requires continuous
re assessment with each and every update/ patch .

7 There are a lot more stakeholders with different names given in different standards and regulations. Two of them are used here
as defined in the series of IEC standards on Industrial communication networks – Network and system security, IEC62443.
The limitation used here has been done for convenience only and does not exclude other roles and stakeholders.

op
ti

on
al

: s
om

e
vi

rt
ua

l m
ac

hi
ne

Hypervisor

Bootloader

hi
gh

-i
nt

eg
ri

ty
 v

ir
tu

al
 m

ac
hi

ne
 m

on
it

or
 w

it
h

O
S

 s
af

et
y

su
pe

rv
is

or

high-integrity
virtual machine

Linux (kernel)

high-integrity
application

optional:
high-integrity

application

optional:
low-integrity
application

...

EB corbos Linux for Safety Applications [33] shows that
all the previously mentioned misconceptions are no more true.
The OS-solution pairs the nature of Linux that perfectly utilizes
the technological advancements of the hardware alongside with
compliance with the mandatory functional safety prescriptions
required in various domains to perform safety functions to reg-
ulatory standards such as e.g. those on functional safety.

Acc. to [24], EB corbos Linux for Safety Applications:

• is based on Linux,

• complies with the mandatory functional safety pre-
scriptions required in various domains to perform
safety functions up to SIL2 according to EN 61508
and up to ASILB according to ISO 26262,

• supports mixed-criticality which means, that safety-
related and non-safety-related applications can run on
the same kernel,

• supports different architectures with or without multi-
ple domains and with or without containers,

• supports long-term maintenance (up to 15 years) and
security support,

• is largely compatible with the features and interface of
any Linux while considering best practices to support
Security,

• comes with a safety-certified tool-chain and libraries,
warranty and liability and

• it is available for free and ad hoc for use in demon-
strators.

The free edition available at [24] ensures, that anyone can
start right away and today. One just has to follow the link pro-
vided above. It comes with a reference setup consisting of two
virtual machines, pre-configured userland setup, and demo ap-
plications. It supports logging and warns if system calls [29]
are invoked that are not allowed in a high integrity context.

The OS-solution enables system and software architects to
consider Linux and hypervisors as core building blocks in con-
text of safety related systems: instantly.

The team currently works on the evolution of the MVP into
a fully featured, industrialized, commercially available product
supporting a growing variety of Linux functionalities and sys-
tem calls. Moreover, an infrastructure enabling customers to
build their systems is being developed.

Integrators and application developers can also use any
other embedded Linux SDK in the first instance; porting the
developed high integrity applications to the solution described
herein will be easy to handle as long as some basic conditions
are considered:

• use musl libc [26]

• use libc++ [27]

• use a proper and qualified startup process

• use specific system calls rather than those, that can
hardly be analyzed out of a customer’s functional con-
text (e.g. ioctl [28])

It is worth noting that typically similar principles apply also
to secure and hardened embedded Linux solutions anyway. It is
assumed, that the aforementioned conditions are most probably
part of a customer’s engineering guideline that does consider
domain specific security standards.

The OS-solution is currently designed for aarch64 v8 archi-
tectures. Support for further aarch64 versions with its SOCs is
planned.

ACKNOWLEDGMENT

As part of the innovative development project together with
Elektrobit Automotive GmbH in Erlangen, emlix is deeply in-
volved in the development of the Supervisor software.

The authors do like to express their deepest appreciation to
the whole development team at emlix and Elektrobit Automo-
tive GmbH. The support and engagement is inimitable. And the
deep expertise of all the contributors in all the different aspects
of technology and processes has been a key enabler to transfer
the initial thoughts to a real product that can be presented to the
market. Many thanks also to all the sponsors and decision mak-
ers for the continuous support and the unconditional trust given
to the technologists. This development project continuously
proved the relevance to take decisions following objective de-
cision records and technical facts. We feel proud and grateful
for the opportunity to contribute and to accompany the journey
we went through and are looking forward to enable customers
to use this secure OS-solution for Safety-Applications based on
embedded Linux.

REFERENCES

[1] F. Arrighetti, M. Armbruster, U. Kirchmaier, M. v. Czettritz, D.
Glöckner, M. A. J. Butt, U. Hildebrand, “Linux für sicherheitsrelevante
Anwendungen - Ermöglicht den Aufbau sicherer und geschützter
Systeme mit Linux”, unpublished abstract for safe.Tech 2025.

[2] S. Winslow, M. Dolan, J. Perlow. Understanding US export controls
with open source projects. Linux Foundation, [online]
https://www.linuxfoundation.org/resources/publications/understanding-
us-export-controls-with-open-source-projects

[3] Bureau of Industry and Security, Department of Commerce .Securing
the Information and Communications Technology and Services Supply
Chain: Connected Vehicles.. [online]
https://www.federalregister.gov/documents/2025/01/16/2025-00592/sec
uring-the-information-and-communications-technology-and-services-
supply-chain-connected-vehicles#p-130

[4] European Parliament and of the council (2024, Oct. 18). DIRECTIVE
(EU) 2024/2853 on liability for defective products and repealing Council
Directive 85/374/EEC. Accessed on: Feb. 7, 2025. [Online]. Available:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX
%3A32024L2853&qid=1738051140257

[5] IEC 62443 series of standards “Security for industrial automation and
control system”.

[6] “Understanding IEC 62443” (2021, Feb. 26). Accessed on: Feb. 7, 2025.
[ONLINE]. Available: https://www.iec.ch/blog/understanding-iec-62443

[7] European Parliament and of the council (2024, Oct. 20). REGULATION
(EU) 2024/2847 on horizontal cybersecurity requirements for products
with digital elements and amending Regulations (EU) No 168/2013 and
(EU) No 2019/1020 and Directive (EU) 2020/1828 (Cyber Resilience
Act). Accessed on: Feb. 7, 2025 . [Online]. Available: https://eur-
lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202402847

www.embedded-world.eu

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202402847
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202402847
https://www.iec.ch/blog/understanding-iec-62443
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32024L2853&qid=1738051140257
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32024L2853&qid=1738051140257
https://www.federalregister.gov/documents/2025/01/16/2025-00592/securing-the-information-and-communications-technology-and-services-supply-chain-connected-vehicles#p-130
https://www.federalregister.gov/documents/2025/01/16/2025-00592/securing-the-information-and-communications-technology-and-services-supply-chain-connected-vehicles#p-130
https://www.federalregister.gov/documents/2025/01/16/2025-00592/securing-the-information-and-communications-technology-and-services-supply-chain-connected-vehicles#p-130
https://www.linuxfoundation.org/resources/publications/understanding-us-export-controls-with-open-source-projects
https://www.linuxfoundation.org/resources/publications/understanding-us-export-controls-with-open-source-projects

[8] Federal Office for Information Security. Cyber Resilience Act -
Cybersecurity in the EU. . Accessed on: Feb. 7, 2025 . [Online].
Available: https://www.bsi.bund.de/EN/Themen/Unternehmen-und-
Organisationen/Informationen-und-Empfehlungen/
Cyber_Resilience_Act/cyber_resilience_act_node.html

[9] Federal Office for Information Security. BSI TR-03183: Cyber
Resilience Requirements for Manufacturers and Products. Accessed on:
Feb. 7, 2025 . [Online]. Available:
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-
Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/
TR-nach-Thema-sortiert/tr03183/TR-03183_node.html

[10] Darktrace, (2024). “State of AI Cybersecurity”
Accessed on: Feb. 7, 2025 . [Online]. Available: URL
https://darktrace.com/resources/state-of-ai-cyber-security-2024

[11] IBM. What is a cyberattack?. Accessed on: Feb. 7, 2025 . [Online].
Available: https://www.ibm.com/think/topics/cyber-attack

[12] J. Corbet, A. Rubini, G. Kroah-Hartman (2005). Chapter 15. Memory
Mapping and DMA. Accessed on: Feb. 7, 2025 . [Online]. Available:
https://www.oreilly.com/library/view/linux-device-drivers/0596005903/
ch15.html

[13] I. Stoppa, Using Linux in Safety Scenarios. Accessed on: Feb. 7, 2025 .
[Online]. Available: https://elisa.tech/blog/2024/03/04/using-linux-in-
safety-scenarios/

[14] S. Khan (2021). White Paper: Advancing Open Source Safety-Critical
Systems. Accessed on: Feb. 7, 2025 . [Online]. Available:
https://www.elisa.tech/wp-content/uploads/sites/75/2021/05/ELISA_Ad
vancing-Open-Source-Safety-Critical-Systems_Whitepaper_050521.pdf

[15] A. Platschek (2016, Dec. 1). DB4SIL2 - Kernel assurance data for
SIL2LinuxMP. Accessed on: Feb. 7, 2025 . [Online]. Available:
https://www.sambuz.com/doc/db4sil2-kernel-assurance -data-for-
sil2linuxmp-ppt-presentation-1001163

[16] Distributed and Embedded System Lab, Information Science and
Engineering college, SIL4Linux Web Interface. Accessed on: Feb. 7,
2025. Lanzhou University. [Online]. Available: DSL
http://sil4linux.dslab.lzu.edu.cn/

[17] M. Klessascheck (2020, Nov. 10). Safety Assurance Cases: Leidvolle
Diskussionen mit Auditoren abkürzen. Accessed on: Feb. 7, 2025.
[Online]. Available: https://www.johner-institut.de/blog/iso-14971-
risikomanagement/safety-assurance-cases/

[18] ISA Global Cybersecurity Alliance (2020, Oct.). Security of Industrial
Automation and Control Systems. Accessed on: Feb. 7, 2025 . [Online].
Available:
https://21577316.fs1.hubspotusercontent-na1.net/hubfs/21577316/2022
%20ISA%20Website%20Redesigns/ISASecure/PDFs/Miscellaneous
%20PDFs/Documents-Articles-and-Technical-Papers/ISAGCA-
Security-Lifecycles-whitepaper.pdf

[19] S. Coughlan (2020, Dec. 15). OpenChain 2.1 is ISO/IEC 5230:2020, the
International Standard for open source compliance.. Accessed on: Feb.
7, 2025 . [Online]. Available:
https://openchainproject.org/featured/2020/12/15/openchain-2-1-is-
iso5230

[20] M. Armbruster, F. Arrighetti (2024), “Linux for safety-related
applications”. exida Automotive Symposium, Spitzing, 2024.

[21] “dependability,” International Electrotechnical Vocabulary. IEC 60050.
section 192-0122. Accessed on: Feb. 7, 2025 . [Online].
https://electropedia.org/iev/iev.nsf/display?openform&ievref=192-01-22

[22] M. Armbruster (2024). A discussion on misconceptions with Linux and
functional safety. Accessed on: Feb. 7, 2025 . [Online]. Available:
https://www.emlix.com/de/about/tech-trends/blog/linux-safety-news-a-
discussion-on-misconceptions-with-linux-and-functional-safety/

[23] M. Armbruster (2025, Jan. 08). Tomorrow is now. Accessed on: Feb. 11,
2025 . [Online]. https://emlix.com/en/about/tech-trends/blog/linux-
safety-news-tomorrow-is-now/

[24] Elektrobit Automotive GmbH (2024). Try EB corbos Linux for Safety
Applications for free. Accessed on: Feb. 7, 2025 . [Online]. Available:
https://www.elektrobit.com/products/ecu/eb-corbos/linux-for-safety-
applications/free/

[25] arm. Learn the architecture - AArch64 memory management Guide -
Address spaces. Accessed on: Feb. 7, 2025 . [Online]. Available:
https://developer.arm.com/documentation/101811/0104/Address-spaces

[26] musl libc. Accessed on: Feb. 7, 2025 . [Online]. Available:
https://musl.libc.org/

[27] “libc++” C++ Standard Library. Accessed on: Feb. 7, 2025 . [Online].
Available: https://libcxx.llvm.org/

[28] ioctl(2) — Linux manual page. Accssed on: Feb. 7, 2025 . [Online].
Available: https://www.man7.org/linux/man-pages/man2/ioctl.2.html

[29] syscalls(2) — Linux manual page. Accessed on: Feb. 7, 2025 . [Online].
Available: system calls
https://www.man7.org/linux/man-pages/man2/syscalls.2.html

[30] patch(1) — Linux manual page. Accessed on: Feb. 7, 2025 . [Online].
Available: patch
https://www.man7.org/linux/man-pages/man1/patch.1.html

[31] arm. ARM Cortex-A Series Programmer's Guide for ARMv7-A -
System-on-Chip (SoC). Accessed on: Feb. 7, 2025 . [Online]. Available:
https://developer.arm.com/documentation/den0013/d/Introduction/Syste
m-on-Chip--SoC-?lang=en

[32] arm. Learn the architecture - AArch64 virtualization Guide – Stage 2
Translation. Accessed on: Feb. 7, 2025 . [Online]. Available:
https://developer.arm.com/documentation/102142/0100/Stage-2-
translation?lang=en

[33] Elektrobit Automotive GmbH (2024). Open-source operating solution
for safety. Accessed on: Feb. 7, 2025 . [Online]. Available:
https://www.elektrobit.com/products/ecu/eb-corbos/linux-for-safety-
applications/

[34] R. Martin (2022, Sep. 14). Why Mixed-Criticality Is the Future of
Automotive Architectures. Accessed on: Feb. 7, 2025 . [Online].
Available: https://blogs.blackberry.com/en/2022/09/why-mixed-
criticality-is-the-future-of-automotive-architectures

[35] Windriver . What Are Mixed-Criticality OS Environments?. Accessed
on: Feb. 7, 2025 . [Online]. Available:
https://www.windriver.com/solutions/learning/what-are-mixed-
criticality-os-environments

[36] RedHat (2021, Jul. 2). Functional safety and continuous certification on
Linux. Accessed on: Feb. 10, 2025 . [Online]. Available:
https://www.redhat.com/en/topics/open-source/functional-safety-and-
continuous-certification-on-linux

[37] (2025, Feb. 10). Kernel Evolvement. Accessed on: Feb. 10, 2025 .
[Online]. Available:https://remword.com/kps_result/evolvement.php

[38] The Linux Foundation (2020, Aug.). 2020 Linux Kernel History Report.
Accessed on: Feb. 10, 2025 . [Online]. Available:
https://project.linuxfoundation.org/hubfs/Reports/2020_kernel_history_r
eport_082720.pdf?hsLang=en

https://project.linuxfoundation.org/hubfs/Reports/2020_kernel_history_report_082720.pdf?hsLang=en
https://project.linuxfoundation.org/hubfs/Reports/2020_kernel_history_report_082720.pdf?hsLang=en
https://remword.com/kps_result/evolvement.php
https://www.redhat.com/en/topics/open-source/functional-safety-and-continuous-certification-on-linux
https://www.redhat.com/en/topics/open-source/functional-safety-and-continuous-certification-on-linux
https://www.windriver.com/solutions/learning/what-are-mixed-criticality-os-environments
https://www.windriver.com/solutions/learning/what-are-mixed-criticality-os-environments
https://blogs.blackberry.com/en/2022/09/why-mixed-criticality-is-the-future-of-automotive-architectures
https://blogs.blackberry.com/en/2022/09/why-mixed-criticality-is-the-future-of-automotive-architectures
https://www.elektrobit.com/products/ecu/eb-corbos/linux-for-safety-applications/
https://www.elektrobit.com/products/ecu/eb-corbos/linux-for-safety-applications/
https://developer.arm.com/documentation/102142/0100/Stage-2-translation?lang=en
https://developer.arm.com/documentation/102142/0100/Stage-2-translation?lang=en
https://developer.arm.com/documentation/den0013/d/Introduction/System-on-Chip--SoC-?lang=en
https://developer.arm.com/documentation/den0013/d/Introduction/System-on-Chip--SoC-?lang=en
https://www.man7.org/linux/man-pages/man1/patch.1.html
https://www.man7.org/linux/man-pages/man2/syscalls.2.html
https://www.man7.org/linux/man-pages/man2/ioctl.2.html
https://libcxx.llvm.org/
https://musl.libc.org/
https://developer.arm.com/documentation/101811/0104/Address-spaces
https://www.elektrobit.com/products/ecu/eb-corbos/linux-for-safety-applications/free/
https://www.elektrobit.com/products/ecu/eb-corbos/linux-for-safety-applications/free/
https://emlix.com/en/about/tech-trends/blog/linux-safety-news-tomorrow-is-now/
https://emlix.com/en/about/tech-trends/blog/linux-safety-news-tomorrow-is-now/
https://www.emlix.com/de/about/tech-trends/blog/linux-safety-news-a-discussion-on-misconceptions-with-linux-and-functional-safety/
https://www.emlix.com/de/about/tech-trends/blog/linux-safety-news-a-discussion-on-misconceptions-with-linux-and-functional-safety/
https://electropedia.org/iev/iev.nsf/display?openform&ievref=192-01-22
https://openchainproject.org/featured/2020/12/15/openchain-2-1-is-iso5230
https://openchainproject.org/featured/2020/12/15/openchain-2-1-is-iso5230
https://21577316.fs1.hubspotusercontent-na1.net/hubfs/21577316/2022%20ISA%20Website%20Redesigns/ISASecure/PDFs/Miscellaneous%20PDFs/Documents-Articles-and-Technical-Papers/ISAGCA-Security-Lifecycles-whitepaper.pdf
https://21577316.fs1.hubspotusercontent-na1.net/hubfs/21577316/2022%20ISA%20Website%20Redesigns/ISASecure/PDFs/Miscellaneous%20PDFs/Documents-Articles-and-Technical-Papers/ISAGCA-Security-Lifecycles-whitepaper.pdf
https://21577316.fs1.hubspotusercontent-na1.net/hubfs/21577316/2022%20ISA%20Website%20Redesigns/ISASecure/PDFs/Miscellaneous%20PDFs/Documents-Articles-and-Technical-Papers/ISAGCA-Security-Lifecycles-whitepaper.pdf
https://www.johner-institut.de/blog/iso-14971-risikomanagement/safety-assurance-cases/
https://www.johner-institut.de/blog/iso-14971-risikomanagement/safety-assurance-cases/
http://sil4linux.dslab.lzu.edu.cn/
https://www.sambuz.com/doc/db4sil2-kernel-assurance-data-for-sil2linuxmp-ppt-presentation-1001163
https://www.sambuz.com/doc/db4sil2-kernel-assurance-data-for-sil2linuxmp-ppt-presentation-1001163
https://www.sambuz.com/doc/db4sil2-kernel-assurance
https://www.elisa.tech/wp-content/uploads/sites/75/2021/05/ELISA_Advancing-Open-Source-Safety-Critical-Systems_Whitepaper_050521.pdf
https://www.elisa.tech/wp-content/uploads/sites/75/2021/05/ELISA_Advancing-Open-Source-Safety-Critical-Systems_Whitepaper_050521.pdf
https://elisa.tech/blog/2024/03/04/using-linux-in-safety-scenarios/
https://elisa.tech/blog/2024/03/04/using-linux-in-safety-scenarios/
https://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch15.html
https://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch15.html
https://www.ibm.com/think/topics/cyber-attack
https://darktrace.com/resources/state-of-ai-cyber-security-2024
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03183/TR-03183_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03183/TR-03183_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03183/TR-03183_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Cyber_Resilience_Act/cyber_resilience_act_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Cyber_Resilience_Act/cyber_resilience_act_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Cyber_Resilience_Act/cyber_resilience_act_node.html

