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Abstract—The  innovative  embedded  OS-solution  described 
within this paper has been motivated by customers asking for a 
“safe”  embedded  Linux.  “safe”  is  understood  as  “functionally 
safe” acc.  to  an established standard,  specifically  ISO26262 or 
IEC61508. The innovation does not only implement its property 
on Functional Safety, but also on Cybersecurity which is needed 
by  further  guidelines,  regulations  and  standards  (e.g.  “Cyber 
Resilience Act” with guidelines such as TR-03183 or IEC62443). 
The field of tension in between Functional Safety, Cybersecurity 
and  long-term maintenance  is  explained.  As  a  second  field  of 
tension, the impact from Linux’ architectural nature and design 
practices  on  the  attempt  to  make  it  safe  is  broken  down. 
However,  the  innovative  approach  derived  from  requirements 
and challenges follows a different strategy. Rather than making 
Linux safe, the OS-solution ensures a dependable data-space for 
safety-related applications up to SIL 2/ ASIL B. This makes this 
solution  suitable  for  almost  any  regulated  industry,  including 
automotive.  It  is  based on a  decoupling of  the  lifecycle  of  the 
Linux kernel from that of other software elements. By virtue of 
this,  its  maintenance  and patching  can  be  done  with  minimal 
effort  while  maintaining  its  property  on  Cybersecurity.  The 
technological concept is based on a "supervisor" software layer 
that detects and prevents events that are able to adversely effect 
the  dependability  of  the  data-space  for  safety-related 
applications.  The  supervision  of  the  Linux  kernel  is  made 
possible  thanks  a  hypervisor  that  leverages  functionalities 
provided by the hardware platform. A minimum viable product 
has been built, is functional and has been positively assessed by 
an  independent  assessor.  The  paper  explains,  how  this  OS-
solution  based  on  embedded  Linux  enables  the  utilization  of 
Linux  in  context  of  functionally  safe  and  secure  systems, 
effectively and efficiently.
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I.  INTRODUCTION

Software  defined  functionality  is  on  the  rise  in  various 
industries. Very often those hold requirements associated with 
Functional Safety and Security. Linux would be an ideal fit as 
an  embedded  operating  system.  And  it  comes  with  a  large 
multiplicity  of  customizable  features,  established  reliability, 
and stability across various use cases.  But as Linux has not 
been developed with the prescriptions on safety-standards in 
mind: what about safety and how to build safe and secure solu-
tions based on embedded Linux that meet the requirements of 
accepted  standards  and  regulations,  such  as  e.g.,  IEC61508, 
ISO26262,  or  IEC62443  and  “Cyber  Resilience  Act”  with 
guidelines such as TR-03183?

This paper describes a solution that enables the industry to 
make use of the benefits of open source software within an 
embedded OS-solution for safety-related applications up to SIL 
2  according  to  EN 61508  and  up  to  ASIL  B  according  to 
ISO 26262. It is based on a "supervisor" software layer (named 
Supervisor) that detects and prevents undesirable behaviors of 
the Linux kernel.  This  supervision over  the Linux kernel  is 
enabled by a Hypervisor that leverages functionalities provided 
by the hardware platform. The approach decouples the lifecy-
cle of the open-source Linux kernel, from that of other soft-
ware elements, including the Supervisor, the Hypervisor, user-
land libraries, and the application software itself, all of which 
must comply with applicable safety standards.

But safety does not come without Security. And safe solu-
tions need an adequate security concept along with its technical 
implementation. This mandates i.e., a modular lifecycle-man-
agement, a secure boot chain, or continuous integrity checks. 
CVE security monitoring as well as the supplementary Mainte-
nance  Monitoring  need  to  accompany  the  embedded  Linux 
solution.
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II. CORE REQUIREMENTS/ REQUESTS, THAT MOTIVATE 
LINUX

Modern control systems, and more generally cyber-physical 
systems, must address many challenges originating from the 
ever increasing complexity and diversity of the functionalities 
to be implemented and from the technological advancement of 
the hardware. And this comes with a lot of challenges, that call 
for an adequate operating system, and Linux seems to tick all 
the boxes (acc. to [1]):

• open source with no vendor lock-in and the flexibility 
in utilization

(e.g. in context of export control as outlined by the 
Linux Foundation [2], rule on „Securing the Informa-
tion and Communications  Technology and Services 
Supply Chain: Connected Vehicles“  [3] as published 
by the US Bureau of Industry and Security or product 
liability as reported in „ProdHaftRL“ resp.  Directive 
(EU) 2024/2853 [4])

• broad support for diverse hardware

• rapid evolution and continuously maintained

• built for performance and Security

• broad API and a huge variety of features that support 
application development

• established tools and build infrastructures

• broad utilization in the most diverse and demanding 
contexts providing an absolutely non-episodical evi-
dence of its reliability

• huge and extremely skilled community-base

While in the past connectivity of all embedded devices and 
machines has been rarely established in some industries, digital 
elements now typically do have a type of connectivity such as 
Bluetooth, WiFi, LAN, USB or other. But even those devices, 
that lack an intended interface to a networked system can be 
subject to interference via physical connector on PCB level. 

This leads to the omnipresent risk of so called Cybersecu-
rity attacks/  cyberattacks,  Acc.  to  [11] this  is  understood as 
“any intentional effort to steal, expose, alter, disable, or destroy 
data, applications, or other assets through unauthorized access 
to  a  network,  computer  system  or  digital  device.”  And  as 
awareness  on  this  grows,  several  regulations,  standards  or 
guidelines arise or former ones are refined and extended.  As a 
reference only and without listing all regulations and guidelines 
across all industries, it is worth to mention here IEC62443 [5] 
but also the so called Cyber Resilience ACT  [7] with its na-
tional interpretations and technical regulations as provided by 
BSI ([8], [9]).

A major  obligation  that  comes  with  this  is  vulnerability 
handling, which aims on  freedom from known vulnerabilities 

for  digital  elements throughout the element’s  support  period 
acc.  to  [9].  Vulnerability  handling  further  needs  to  include 
some basic  requirements.  Selected  ones  which  motivate  the 
discussion herein, are (simplified and derived from [9]): 

• The manufacturer1 needs a process to identify vulner-
abilities affecting the TOE2.

• The manufacturer needs a documentation for vulnera-
bilities, its impact and how they can be mitigated.

• The manufacturer needs to mitigate vulnerabilities in 
a timely feasible manner .

This responsibility along with its obligations is not new or 
even unknown when working in regulated context. Those de-
veloping and producing safety-related components and systems 
are used to this. And a lot of embedded systems are used in 
safety-related context. Acc. to the prescriptions of the safety 
standard in use, many measures have to be put in place  to 
show, that the component or system does exactly what it is in-
tended to do but nothing else. The rigor to which those mea-
sures are selected and implemented depend on the risk the cor-
responding system function can cause commonalities and dif-
ferences in between Functional Safety and Security which are 
relevant to this article, can be summarized as follows:

• Both,  Functional  Safety  and  Security  as  a  system 
property need to be managed throughout the lifecycle 
of the component or product from engineering to dis-
posal.

• Both,  safety-engineering  and  security-engineering 
work with  assumptions,  model  the  real-world  com-
plexity and validate both throughout the development 
lifecycle.  An  assessment  is  typically  done  before 
putting a product onto the market and a a certification 
body is involved 3.

• Update  and  modification  typically  needs  re-assess-
ment done by an assessment body. 

• Continuous modification  is not intended to be done 
for  functionally  safe  elements.  But  for  secure  ele-
ments  it  is  required:  assumptions  made  on  an  ele-
ment’s context will change continuously especially in 
context of Security. E.g., the model on how attackers 
behave  and  the  tools  they  have  will  continuously 
evolve. Vulnerabilities will exploit and as such, risk 
needs  to  be  re-assessed and modifications  be  made 
throughout  an  elements  lifetime. 
As pointed out in [10], that in the following years AI 
will further impact the threat landscape. It will change 
as „malicious actors are launching attacks at machine 
speed and scale“.[10] further emphasizes, that security 
measures need to „evolve in tandem with the the so-
phistication of attackers“.

1 “The manufacturer” in particular and further roles in general are defined in [6], book 1, section 3.3.1.
2 TOE: Target of Evaluation as defined in [6], book 1, section 3.2.
3 Standards and regulations need to be considered with care as there are different level of rigor also defined for assessments and/ 

or audits (e.g. as defined in [6], book 1-1, section  3.2.10.).



As an essence from what has been described before and for 
what  is  relevant  throughout  this  paper,  three  key-properties 
need to be balanced, and are relevant to an OS-solution based 
on embedded Linux:

• Functional Safety, 

• Cybersecurity, and 

• long-term Maintainability

And while Linux is known for being well long-term main-
tained and designed for Cybersecurity, the lack of a safety-cen-
tric focus throughout its design and development as well as the 
area of conflict in between continuous maintenance and Func-
tional Safety need to be addressed.

III. AREAS OF CONFLICT WHEN USING LINUX IN HIGHLY 
REGULATED CONTEXT

A. Functional safety and Linux

Linux has not been developed with regulatory requirements 
on Functional Safety in mind. While domain-specific solutions 
are available, there has not been a product solution available 
that has received a positive and very far-reaching assessment 
from a certification body which applies to both EN 61508 (SIL 
2) and ISO 26262 (ASIL B, SEooC).

Whether  it  is  machinery,  railway  signaling,  automotive, 
biomedical, or even home appliances, any domain is subject to 
the  prescriptions  of  standards,  norms,  regulations,  and  also 
laws, with which the Linux development cycles did not com-
ply.  There  has  been no approach to  maintain  any claim on 
compliance with each update issued, which happens quite fre-
quently and which is one of the advantages of Linux (acc. to 
[1]). Two key issues we want to point out herein are: 

• argument and evidence on process compliance

• argument and evidence on freedom from interference 
in between Linux and safety-relevant userland appli-
cations

note: this implies also freedom from interference in 
between DMA [12] devices and userland applications.

Unfortunately, there has been no generic solution available 
at present that shows process compliance of Linux to any stan-
dard or regulation on functional safety with all its lifecycles, 
especially architecture, design and modification although vari-
ous  companies  and  consortia  look  at  different  aspects  (e.g., 
ELISA [14] and [13], opentech [15], RedHat [36], Distributed 
and Embedded System Lab [16])4.

Various attempts made or being made to show correctness 
and freedom from interference often share a common approach 
that can be summarized as one or the other of the many flavors 
of “reverse engineering” (as mentioned in [1]).

Following the explanations as given in  [1],  the common 
idea mostly is, although with different levels of sophistication, 
is to demonstrate by analysis and testing that Linux “does what 
it says on the tin”, with the added difficulty that:

• Linux does not have the “tin” where to read its in-
tended functionalities, meaning that the design infor-
mation is sparse and distributed and does not guaran-
tee its completeness and correctness and

• Linux is designed for performance and Security. It is a 
huge blob of software. The Linux (its kernel) is mono-
lithic. Its services run in a single address space and as 
such they do have full access to the memory. This im-
plies kernel-memory, device-memory but also mem-
ory assigned to userland processes. This access is im-
manent to the nature of Linux. While such a design 
comes with the advantage of performance (amongst 
others),  it  is  close to  impossible  (not  in  theory but 
practically) to show, that the Linux kernel does not 
adversely effect userland processes without any fur-
ther measures. awhile maintaining its main properties: 
performance and Security.

Such an approach is labor-intensive and time-consuming: 
just to name the most obvious issue, the almost infinite number 
of internal states of Linux requires an extremely extensive test-
ing activity and an even more extensive analysis to demon-
strate that such a testing activity is sufficiently exhaustive.

Even  assuming  that  such  an  approach  is  successful,  it 
would need to be repeated each time an update to Linux is is-
sued, which happens quite frequently (and which is one of the 
advantages of Linux, as stated above); it is true that an appro-
priate  impact  analysis  could  reduce  the  effort  required,  but 
even such an impact analysis would take time and would be ex-
pensive. 

On this basis,  area of conflict 1 can be derived: Showing 
process compliance, correctness and freedom from interference 
for a huge blob of SW as Linux is extremely labor-intensive, 
time-consuming and hardly maintainable. Due to the nature of 
Linux,  the kernel  does have full  access to userland applica-
tions.

B. Cybersecurity and long-term maintenance while maintain-
ing claims on functional safety

One of the core advantages besides the broad support of 
hardware and performance is, that Linux is developed in the 
community and continuously maintained. There is no vendor 
lock-in. Everybody can look at the sources. And everybody can 
contribute. This trait of open source software is one of the mo-
tivators why it is treated differently from various rules/ laws 
([2][3][4]).

The Linux kernel has a new version every 8 to 12 weeks. 
And developers and researchers all over the world find bugs 
and exploits and send fixing patches almost every day to the 
Linux source code (see [37] or [38]) which lead to updates, that 
are available to all users. Management of these fixing patches 
is an established process done by system administrators typi-
cally and it serves the need to maintain Cybersecurity.

4 Design alternatives based e.g. coded processing are not considered here as those approaches differ from the main idea followed 
herein: use Linux as is.
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While this is of great value for all  those selling devices, 
which have to consider security requirements given in industry-
specific standards, this comes with the following needs:

• continuous re ensuring Functional Safety

• continuous  re  ensuring Cybersecurity  acc.  to   stan-
dards, regulations and guidelines

This is because any change can adversely effect the safety 
argument and the related supporting evidence on Functional 
Safety or Cybersecurity5 and comes with the risk to add unin-
tended functionality within the usage profile/ assumed context 
for the element under consideration.

It is essential, that the software in use is owned and consid-
ered trustable. It is fit for its purpose/ for use in its assumed 
context and asset owners (for role-definition see e.g., [18]) can 
claim this with sufficient rigor, qualitatively or quantitatively. 
Ownership can be interpreted from a practical  and a formal 
point of view. Practically, ownership is understood herein as:

• it  is  known,  from  where  the  software  comes  and 
which  systematic  capability  and  as  such,  we  know 
whether the software fits to its purpose.

• it can be build in a systematic way from source

• it can be modified in a controlled way without break-
ing  functionality,  regressions  and  w/o  adding  unin-
tended features.

• it can be used in a controlled way.

◦ its intended functionality is known by  adequate 
documentation.

◦ its intended functionality is provided and can be 
tested

◦ no  unintended  functionality  is  implemented 
within the assumed context of use with its tests.

Ownership also comes with the obligation on open source li-
cense  compliance.  OpenChain  2.1  which  is  now  ISO/IEC 
5230:2020  [19],  the  International  Standard  for  open  source 
compliance defines processes one has to act upon. 

As a consequence, the larger the SW is, that needs continu-
ous maintenance to ensure Cybersecurity, the more labor-inten-
sive and time-consuming it is to do the maintenance. Evidences 
needed by arguments on Functional Safety, Security and fur-
ther standards need to be updated, the compliance argument re-
evaluated  and  eventually  even  re-assessed  by  a  certification 
body. 

Area of conflict 2: Continuously maintaining arguments, 
analysis and supporting evidence on Functional Safety along 
all patches for a huge blob of SW as Linux throughout the life-
time of the corresponding product or component, is extremely 
labor-intensive, time-consuming and hardly doable.

IV. PROPOSED TECHNICAL SOLUTION

We are  looking  for  an  OS-solution  based  on  embedded 
Linux, that implements the need for Functional Safety, Cyber-

security, and  long-term Maintenance with reasonable effort. 
Not to forget the feature-richness that comes with Linux along 
with the aspects mentioned in section II.

A. Basic strategies and derived principle

Rather  than following the  attempt  to  show that  Linux “ 
does what it says on the tin” [1], the innovation is based on a 
completely different approach compared to established „safety“ 
approaches. The  “burden of the proof” is shifted from Linux to 
a “supervision software layer” detecting when Linux does not 
behave dependably.

In other words, rather than trying to demonstrate that Linux 
is dependable, it is detect when it isn’t.

Fig. 1. The basic principle used to guide the design of the OS solution for 
Safety Applications based on Linux

The solution follows the following strategies (acc. to [20]):

• Change the paradigm: use the strength of Linux and 
detect when things go wrong rather than trying to pre-
vent faults. Let the kernel run as usual. Do not attempt 
to change it. Use it. And instead, “put it into a box”.

• Just indicate once integrity cannot be ensured and al-
low  fault-reactions  to  be  added  as  needed  by  the 
project.

• Focus on an application’s data space. Ensure correct-
ness. Make it a dependable [21] data space.

• Separate lifecycles of all building blocks (Hypervisor, 
Supervisor,  kernel,  userland applications with its  li-
braries).

The basic principle is depicted in the following Fig. 1.

B. Basic functional and architectural concept

The solution implemented leverages upon the features of-
fered  by  advanced  hardware  to  supervise  the  behavior  of 
Linux, namely its access to memory and processing resources.

Two main software elements implement this solution ([1]):

• a Hypervisor provides Linux with virtual memory and 
computation resources, hence the hypervisor has full 
control over the access to those resources by Linux

• a Supervisor software analyses any attempt made by 
Linux  to  access  memory  or  computation  resources 
and detects when such an attempt is able to adversely 

5 The argument with its reference to supporting evidence is typically summarized in assurance cases [17].
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affect the dependability of the safety function (with 
the terms used as in EN 61508).

The Hypervisor with its Supervisor software implement du-
plication of the control structures of virtual memory and com-
putation resources. The representation of the memory map and 
the relevant hardware registers, which we call   “state of the 
System on Chip  [31]”,  is  available twice: high-integrity and 
low-integrity.  Fig. 2 depicts this duplication in the middle us-
ing the symbol of a database. One is used for non and the other 
for safety-related intermediate physical memory with its map-
ping to physical memory. This duplication is done in between 
intermediate  physical  and  virtual  addresses.  While  the  OS 
maintains the virtualization on the level of virtual addresses, 
the hardware with the Supervisor maintain the translation of in-
termediate physical to physical addresses.

The terms “high-integrity” and “low-integrity” are used for 
convenience throughout  this  text.  “high-integrity” is  used to 
characterize hardware resources, which are supervised and as 
such, for which the Supervisor is used to detect adverse events. 
An adverse event happens if any software element other than 
high-integrity application(s) itself modifies the data generated, 
used or managed by the high-integrity Application(s). “low-in-
tegrity”  is  used  to  characterize  unsupervised  hardware  re-
sources.

Once the safety-related application is executed, the high-in-
tegrity representation is used. If not, the low-integrity represen-
tation is used. Access to the high-integrity domain is strictly 
controlled. Therefore, the two main SW elements [20]:

• supervise and legitimate user-space initialization with 
its processes, for the start user space applications

• separate  read/  write/  execute-rights  onto  memory 
pages for kernel and user space applications

• supervise and legitimate any read/ write/ execute at-
tempt on the high-integrity application memory

• supervise and legitimate updates on registers holding 
the  processor  state  throughout  context  switches 
caused by switching in between userland applications 
and kernel

• indicate any fault detected

C. Main interaction in between HW and SW: multi-level ad-
dress virtualization

As outlined at [20] the concept does heavily rely on virtual 
address spaces with its settings and tables for all the transla-
tions which are often called „translation regimes“ [32].

And while the OS controls the set of translations from vir-
tual memory to what the Software sees as physical memory, a 
hypervisor can control another set of translations. Those map 
the addresses with its settings as seen by the OS to the real 
physical address space. With this approach, a so called inter-
mediate physical address space is placed in between the virtual 
one and the physical one. This layer is under full control of a 

Hypervisor. A much more complete description on this is given 
at Arm’s AArch64 memory management Guide [25]. As virtu-
alization does not only focus on memory but on HW in general, 
the aforementioned description is also applied to CPU regis-
ters. The supervision of DMA-devices works similarly and de-
mands the corresponding HW-support.

Fig. 2. Two stages  of  virtualization used as  one of  the  core 
HW-features

D. Applicability of the solution

As outlined in  [1] the immediate advantage of this is that 
the dependability of the safety function performed by a cyber-
physical system does not rely on Linux itself, but on the above-
mentioned two software elements, while at the same time it al-
lows to exploit all the features of Linux. 

As a consequence, the effort required to build the safety ar-
gument and the related supporting evidence is reduced, because 
only the two above-mentioned software elements are directly 
involved, but also the update to a new version of Linux re-
quires a moderate effort and, above all, even if performed in-
correctly it would not affect the safety but only the availability.

Another remarkable advantage of this solution is that it al-
lows  to  execute  both  safety-related  (supervised)  and 
non-safety-related (unsupervised) applications at the same time 
on the same Linux; the non-safety-related application is like 
any other application running on Linux and is not affected or 
functionally limited by the presence of the safety-related appli-
cation6.

As such, EB corbos Linux for Safety Applications is the 
first and only Linux OS-solution to comply with SIL 2/ASIL B 
safety requirements [33]. It comes with at least one execution 
environment  based  on  Linux,  that  supports  mixed-criticaly: 
low-integrity and high-integrity applications can be executed 
next to each other while using the same kernel. And as it is 
based on Linux, it opens up the utilization of established tools 
and libraries, that fit to the customer’s projects.

6 The ability to execute two software elements that are associated with different levels of criticality on the same HW system is 
also called “Mixed Criticality” [34]. The term is typically used on the level of systems. On the level of operating systems, 
also the term “Mixed-Criticality OS Environments” is used [35].
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[1] stated that  a  minimum viable product  (which can be 
considered a technological demonstrator) has been built and is 
functional  while  an  independent  assessor  has  confirmed not 
only the dependability of the software, but also that a cyber-
physical system implemented using this solution is able to:

• perform  safety  functions  up  to  SIL2  according  to 
EN 61508

• fulfill safety requirements up to ASILB according to 
ISO 26262.

This makes this solution suitable for almost any regulated 
industry, including automotive; a fully-featured version is cur-
rently being developed.

The user effort required to positively assess a system devel-
oped using the OS solution is reduced to the minimum in terms 
of analysis, documentation and testing.

And even for the achievement of higher SILs or ASILs, it 
offers a broad range of possibilities that can be exploited on a 
project-specific basis.

For more advanced versions, multiple different independent 
virtual domains are supported. Also a low level of abstraction 
is supported with a virtual domain directly hosted by the Hy-
pervisor. Further virtual domains can be added with a reason-
able effort because their independence is largely covered by the 
already achieved positive independent safety assessment.

The above mentioned independent domains further allow to 
apply techniques (like, for instance, diversity, redundancy or 
cross-check) able to achieve the required level  of  safety in-
tegrity for the most demanding projects.

Architectural patterns that can be built  with this solution 
described are briefly described online within a blog-post [22]. 
The core misconceptions that prevent stakeholders to consider 
OS solutions based on Linux for safety related systems are also 
analyzed therein.

Fig. 3. Basic software architecture

Fig. 3 depicts the basic architectural  setup with the core 
building blocks such as Bootloader, Hypervisor and multiple 
virtual machines. The virtual machine monitor for the high-in-

tegrity  virtual  machine  is  extended with  the  Supervisor.  As 
mentioned  before,  this  Supervisor  is  only  used  for  high-in-
tegrity applications while low-integrity applications maintain 
unsupervised.

E. Interplay of lifecycle elements and SW maintenance

Not only the SW-architecture does reflect a high degree of 
modularization. It goes hand in hand with the modularization 
of the safety argument and the related evidence with the corre-
sponding lifecycles of core building blocks such as Hypervisor, 
Supervisor, kernel and userland applications with its libraries.

And as Functional Safety mainly relies on the two SW ele-
ments Hypervisor and Supervisor as described in subsection B, 
the effort required to build the safety argument and the related 
supporting evidence is reduced, because only the two  software 
elements Hyper- and supervisor are directly involved.

Asset  owners  and product  suppliers7 are  enabled to  effi-
ciently and effectively implement vulnerability analysis along 
with  update  management.  The  corresponding  processes  can 
largely be implemented and operated independently. 

Security features known in Linux are available in the op-
tional virtual machine which can operate as gateway. But secu-
rity features can also be enabled within high-integrity virtual 
machine  with  its  mixed-criticality  user-space  domain:  non-
safety-related and safety-related features can seamlessly be or-
chestrated and used.

V. SUMMARY ON WHY THE SOLUTION CAN ENABLE 
CUSTOMERS, TO USE LINUX IN HIGHLY REGULATED CONTEXT

In  December  2024  emlix  listed  five  misconceptions  on 
Linux and Functional Safety that may deter system and soft-
ware architects from considering Linux and hypervisors as core 
building blocks in context of safety related cyber-physical sys-
tems [22]:

• open-source processes and software cannot be used in 
context of safety-related systems.

• Linux needs to be assessed as a monolithic software-
blob.

• Virtualization is a source of additional problems, re-
quiring  extra  efforts  for  qualification  and  mainte-
nance, and demands expertise that is rarely available 
on the market.

• Each single element of an execution environment in-
cluding its libraries need to be “safe”

• There is only one architectural approach to meet all 
functional  and  non-functional  requirements  using 
Linux

In context of Security it is worth to bring in and emphasize one 
more, which is [23]:

• An OS-solution based on Linux requires continuous 
re assessment with each and every update/ patch .

7 There are a lot more stakeholders with different names given in different standards and regulations. Two of them are used here 
as defined in the series of IEC standards on Industrial communication networks – Network and system security, IEC62443. 
The limitation used here has been done for convenience only and does not exclude other roles and stakeholders.
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EB corbos Linux for Safety Applications  [33] shows that 
all the previously mentioned misconceptions are no more true. 
The OS-solution pairs the nature of Linux that perfectly utilizes 
the technological advancements of the hardware alongside with 
compliance with the mandatory functional safety prescriptions 
required in various domains to perform safety functions to reg-
ulatory standards such as e.g. those on functional safety. 

Acc. to [24], EB corbos Linux for Safety Applications:

• is based on Linux,

• complies  with  the  mandatory  functional  safety  pre-
scriptions  required  in  various  domains  to  perform 
safety functions up to SIL2 according to EN 61508 
and up to ASILB according to ISO 26262,

• supports  mixed-criticality  which means,  that  safety-
related and non-safety-related applications can run on 
the same kernel,

• supports different architectures with or without multi-
ple domains and with or without containers,

• supports long-term maintenance (up to 15 years) and 
security support,

• is largely compatible with the features and interface of 
any Linux while considering best practices to support 
Security,

• comes with a safety-certified tool-chain and libraries, 
warranty and liability and

• it is available for free and ad hoc for use in demon-
strators.

The free edition available at  [24] ensures, that anyone can 
start right away and today. One just has to follow the link pro-
vided above. It comes with a reference setup consisting of two 
virtual machines, pre-configured userland setup, and demo ap-
plications. It supports logging and warns if system calls  [29] 
are invoked that are not allowed in a high integrity context.

The OS-solution enables system and software architects to 
consider Linux and hypervisors as core building blocks in con-
text of safety related systems: instantly.

The team currently works on the evolution of the MVP into 
a fully featured, industrialized, commercially available product 
supporting a growing variety of Linux functionalities and sys-
tem calls.  Moreover,  an infrastructure enabling customers to 
build their systems is being developed.

Integrators  and  application  developers  can  also  use  any 
other embedded Linux SDK in the first instance; porting the 
developed high integrity applications to the solution described 
herein will be easy to handle as long as some basic conditions 
are considered:

• use musl libc [26]

• use libc++ [27]

• use a proper and qualified startup process

• use specific system calls rather than those, that can 
hardly be analyzed out of a customer’s functional con-
text (e.g. ioctl [28])

It is worth noting that typically similar principles apply also 
to secure and hardened embedded Linux solutions anyway. It is 
assumed, that the aforementioned conditions are most probably 
part of a customer’s engineering guideline that does consider 
domain specific security standards.

The OS-solution is currently designed for aarch64 v8 archi-
tectures. Support for further aarch64 versions with its SOCs is 
planned.
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