
Making it possible to
build safe and secure
systems with Linux
Federico Arrighetti - Elektrobit Automotive GmbH

Michael Armbruster - emlix GmbH

21 May 2025

© Elektrobit 2025

What ever happened to Baby Safety?

© Elektrobit 2025

Safety-critical and mission-critical systems have grown up:

• functionalities have become more and more complex

• ...and more and more diverse too

• the amount of data to compute has dramatically increased

• systems on chip are not the microprocessors they used to be

• ...not to mention sensors, actuators and other more advanced devices to interface

• the need for the co-existence of applications having different levels of criticality is
growing

• cyber-security has joined the party

• and of course pressure on development costs has never left the playground

Slide 2

The answer, my friend, is blowin’ in the Linux
Linux does not lack virtues:

• open-source means rapid evolution cycle, continuous maintenance, and quick
bug-fixing

• no vendor lock-in

• supports most hardware

• cyber-security is built-in

• fully scalable for the specific needs of each project

• plenty of skilled developers available on the market

• extremely broad use in the most diverse and demanding contexts provides an
absolutely non-episodical evidence of its reliability

Linux would be the answer, if it just weren’t for a detail: IT IS NOT DEPENDABLE!

© Elektrobit 2025 Slide 3

But then, let’s make Linux dependable
It’s not rocket science, it just takes to follow the norms: produce the design specification
(requirements, architecture...) and then test accordingly.

Well, maybe it’s not rocket science, but Linux is big and complex, very big and very
complex:

• functional specification is sparse, incomplete, and of questionable quality

• Linux is monolithic, difficult to decompose for detailed specification and testing

• automatic analysis tools may show the complexity, but they do not make it less
complex

• and all that needs to be repeated for each new release (so, quite often)

Smells of “reverse engineering” from a mile.
Maybe just a bit better mannered or sugar-coated, but still “reverse” engineering.
Or maybe post-mortem examination...

© Elektrobit 2025 Slide 4

If you don’t like the solution, change the problem
We at Elektrobit with emlix believe that Linux IS dependable, just that we cannot
demonstrate that it is, and to be honest we are not that keen on trying.

Instead, we just detect when Linux is NOT dependable:
• we are not interested in Linux itself
• we do not need an assessment of Linux or of any software
• we are interested in the cyber-physical systems built on Linux
• we focus on the application software and not on the operating system
• we add to Linux a “guardian angel” who detects when Linux misbehaves
• we limit access rights of Linux using the features of the ARM architecture

And not only it works, but it has been positively assessed
by TÜV Nord for SIL2 EN 61508 / ASILB ISO 26262
© Elektrobit 2025 Slide 5

What does the EBcLfSA look like

EB corbos Hypervisor Supervisor

System On Chip (ARM AArch64)

ARM Safety CoreARM Safety CoreARM Safety Core

“High-Integrity” Virtual Machine

SIL2 / ASILB

Middleware

H
I A

pp
lic

at
io

n

H
I A

pp
lic

at
io

n

HI
Application

HI
Application

EBcLfSA Linux Kernel

SIL0 / Quality Management

Middleware

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Application

Application

“Low-Integrity” Virtual Machine
SIL0 / Quality Management

e.g. EB corbos Linux

Middleware

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Application

Application

e.g. ARM
M-Core

e.g. ARM
M-Core

© Elektrobit 2025 Slide 6

To each their own: separation of virtual resources

EB corbos Hypervisor Supervisor

System On Chip (ARM AArch64)

“High-Integrity” Virtual Machine

SIL2 / ASILB

HI Application #1 HI Application #2

EBcLfSA Linux Kernel

“Low-Integrity”
Virtual Machine

SIL0 / Quality
Management

Unsupervised
virtual resources

SIL0 / Quality
Management

Other applications

Other Linux kernel
and software

Unsupervised virtual resources

Unsupervised
virtual resources

Supervised exclusive
virtual resources #1

Supervised exclusive
virtual resources #1

© Elektrobit 2025 Slide 7

How to get it: ARM AArch 64 Exception Levels

Exception Level 2

EB corbos Hypervisor

Exception Level 0

Application

Exception Level 1

EBcLfSA Linux Kernel

In
creasin

g p
rivilege

Exception Levels define the access rights

Both software elements and resources
(memory, registers...) have Exception
Levels

A software element can access only
resources having the same or lower
exception level

For instance, the EBcLfSA Linux Kernel
runs at Exception Level 1:
• it can access resources having Exception

Level 1 or Exception Level 0
• it cannot access resources having

Exception Level 2 or Exception Level 3

© Elektrobit 2025 Slide 8

How to use it: multi-stage virtualisation (ARM AArch 64)
 “High-Integrity”
Virtual Machine

virtual address space

EBcLfSA Linux
Kernel

virtual address
space

HI Application #1
virtual address

space

HI Application #2
virtual address

space

 Stage 1 mapping
Exception Level 1
managed by the

EBcLfSA Linux Kernel

EBcLfSa Linux
Kernel
Stage 1

translation
tables

HI Application
#1

Stage 1
translation

tables

HI Application
#2

Stage 1
translation

tables

 Stage 2 mapping
Exception Level 2
managed by the

EB corbos Hypervisor

EBcLfSA Linux
Kernel
Stage 2

translation
tables

HI Application
Stage 2

translation
tables

 Intermediate physical
address space

EBcLfSA Linux
Kernel

intermediate
physical

address space

HI Application #1
intermediate

physical
address space

HI Application #2
intermediate

physical
address space

 Physical
address space

EBcLfSA Linux
Kernel

physical
address space

HI Application #1
physical

address space

HI Application #2
physical

address space

© Elektrobit 2025 Slide 9

 “High-Integrity”
Virtual Machine

virtual address space

 Physical
address space

EBcLfSA Linux
Kernel

physical
address space

HI Application #1
physical

address space

HI Application #2
physical

address space

The result: differentiated access rights (ARM AArch 64)

EBcLfSA Linux
Kernel

virtual address
space

HI Application #1
virtual address

space

HI Application #2
virtual address

space

© Elektrobit 2025 Slide 10

 Stage 2 mapping
Exception Level 2
managed by the

EB corbos Hypervisor

 Stage 1 mapping
Exception Level 1
managed by the

EBcLfSA Linux Kernel

read-only

read-only

read / write / execute

read / write / execute

read / write / execute

How does the separation work?

Access to the physical memory happens through the Stage 2 translation tables
(Exception Level 2) which are managed by the EB corbos Hypervisor

The EB corbos Hypervisor knows “who” is trying to access “what” memory

The separation is that the EB corbos Hypervisor does not allow the EBcLfSA Linux Kernel
to write or execute the memory of a HI Application

If the EBcLfSA tries to write or execute the memory of a HI Application:

• the EB corbos Hypervisor detects a violation and invokes the Supervisor as the
exception handler

• the Supervisor analyses the access and

• if the access is legitimate, it actually executes it dependably

• if the access is not legitimate, it blocks it and does not allow it

© Elektrobit 2025 Slide 11

And what does that mean for the HI Application?

© Elektrobit 2025

The dependability of the HI Application consists of the following:
• only the HI Application itself can write or execute the memory allocated to it
• any write or execute to the memory allocated to a HI Application is supervised
• any legitimate access by the EBcLfSA Linux Kernel to the memory allocated to a HI

Application is actually (and dependably) executed by the EB corbos Hypervisor and
the Supervisor

But also:
• when the HI Application is resumed following a context switch, the Supervisor

checks that the system context is correctly restored
• the EB corbos Hypervisor checks that the HI Application is actually being executed

Under these conditions, the HI Application is dependable
Slide 12

And now the bad news: what’s NOT in the package
The functional correctness of the EBcLfSA Linux Kernel is NOT ensured:
• it is ensured that the Linux does not adversely affect the dependability of the HI

Application as described, but it is NOT ensured that it does what it is expected to
do

The correctness of data supplied to the HI Application is NOT ensured:
• no dependability claim is made on that data

Detection, mitigation and negation of credible hardware faults is NOT provided
• the matter is considered project-specific

The EBcLfSA detects violations of the dependability of the HI Application, but does NOT
implement the mitigation or negation:
• mitigation and negation of detected issues is considered project-specific and needs

to be defined and implemented at a higher level of integration

© Elektrobit 2025 Slide 13

• correct loading of memory
segments

• protection of the memory of
the HI Application

• correct restoring of the
execution context for the HI
Application

• detection of violations of the
above points

• providing information about
the health status

• separation of virtual address
space for the “High-Integrity”
Virtual Machine

• separation of the virtual
address spaces between the
EBcLfSA Linux Kernel and the
HI Application

• trapping attempted accesses
to memory or registers

• invoking the Supervisor
• checking that the HI

Application is actually being
executed

• confirming that the HI
Application is supervised

• exception levels
• multi-stage virtualization
• Memory Management Unit

In summary: who does what and what it gets
 Features

provided by the
EB corbos Hypervisor

Features
provided by the hardware

(ARM AArch64 architecture)

Resulting features
implemented in the

EBcLfSA

© Elektrobit 2025 Slide 14

But wait: there‘s more!

EB corbos Hypervisor Supervisor

“High-Integrity” Virtual Machine

SIL2 / ASILB

Middleware

H
I A

pp
lic

at
io

n

H
I A

pp
lic

at
io

n

H
I A

pp
lic

at
io

n

SIL0 /
Quality Management

Middleware

Ap
pl

ic
at

io
n

A
pp

li
ca

ti
on

EBcLfSA Linux Kernel

“Low-Integrity”
Virtual Machine

SIL0 /
Quality Management

e.g. EB corbos Linux

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Middleware

Ap
pl

ic
at

io
n

SIL0 / Quality
Management

Android Linux Kernel

Application

Android
Framework

Hardware
Abstraction Layer

System On Chip (ARM AArch64)

ARM Safety CoreARM Safety CoreARM
A-Core

ARM
A-Core

ARM
A-Core

ARM
A-Core

e.g. ARM
M-Core

e.g. ARM
M-Core

SIL / ASIL as needed

Microcontroller
Abstraction Layer

e.g. EB tresos
Safety

e.g. EB tresos OS

Runtime
Environment (RTE)

Application

© Elektrobit 2025 Slide 15

solutions@emlix.com

emlix GmbH

www.emlix.com

Thank you for your attention

© Elektrobit 2025

Federico Arrighetti

federico.arrighetti@elektrobit.com

Elektrobit Automotive GmbH

www.elektrobit.com

 21 May 2025

Michael Armbruster

	Slide 1
	What ever happened to Baby Safety?
	The answer, my friend, is blowin’ in the Linux
	But then, let’s make Linux dependable
	If you don’t like the solution, change the problem
	What does the EBcLfSA look like
	To each their own: separation of virtual resources
	How to get it: ARM AArch 64 Exception Levels
	How to use it: multi-stage virtualisation (ARM AArch 64)
	The result: differentiated access rights (ARM AArch 64)
	How does the separation work?
	And what does that mean for the HI Application?
	And now the bad news: what’s NOT in the package
	In summary: who does what and what it gets
	But wait: there‘s more!
	Slide 16

