
www.elektrobit.com

crinit and cominit white paper

Tech paper

http://www.elektrobit.com

2

crinit and cominit white paper

Summary
of white paper contents

1. Booting – basics									 3

	 • The optional initramfs	 		 	 				 4

2. cominit		 	 							 5

3. crinit		 	 							 5

	 • Tasks										 6

	 • Features										 6

	 • crinit and elos									 7

4. Shell-free and secured startup							 8

	 • Signatures on config files								 8

	 • Environment for each task								 8

5. crinit at runtime									 9

	 • When is a process ready to serve?							 10
	
6. Conclusion										 11

3

crinit and cominit white paper

This white paper discusses the boot process of Linux systems and presents two FOSS software packages that
implement important tasks required to boot up a Linux system in a function-focused embedded environment.

The presented tools cominit and crinit are alternatives to systemd and initramfs tools such as dracut or the
initramfs tools of Debian. In many cases it is a good idea to just take these tools and configure them as needed.
But in embedded systems that are highly optimized towards performance (fast boot time), storage (no waste of
memory), security, and functionality, these generic tools might not fit perfectly. To achieve the abovementioned
goals with systemd and dracut, a manual shrinking process from the feature-rich default configuration needs to be
accomplished by developers. Security features such as configuration-file checking are not available on application
level in systemd, dracut, and the Debian tools. These tools also heavily depend on shell interpreters, which might
cause security concerns.

To overcome these limitations with focus on embedded devices, crinit and cominit were developed.

1. Booting – basics

KernelBootloader

cominit (initramfs)

read partition metadata

switch into rootfs

set up rootfs
(using dm-verity/-integrity

if defined in metadata)

crinit (rootfs)

start/manage tasks

Task configs (example)

start basic sytem services

mount network folders

start applications bring up network

start servers

User space API

perform minimal system setup

Figure 1: Flow diagram of a Linux bootup

Booting a Linux system is basically a trivial task. The bootloader just needs to load a few executable files and some
data to the RAM and then pass control to the executables. Following this, the kernel will do its own init steps and
then pass control over to user space, to get the remaining steps done.

These user-space activities are the focus of this white paper, hence the necessary activities and some tools
committing these tasks are presented.

4

crinit and cominit white paper crinit and cominit white paper

The optional initramfs

Server and desktop systems running Linux almost always make use of a so-called initial RAM disk, short initrd,
or initramfs, see Figure 1. The initramfs is a file system image that contains a regular root file system (rootfs)
to operate a feature-rich user-space environment from RAM and, hence without the need of having a storage
device, is already usable at this early time. Sometimes the term “early user space” is used for this minimal Linux
environment.

This initramfs contains all tools needed to detect and mount the correct final root file system. This may also
include the steps of decryption and integrity checking.

The following table sketches the activities of an initramfs during boot up:

These steps can vary considerably depending on the use case and the environment of the system. Especially in
embedded systems, a fast boot up is usually important and the hardware layout is fixed. Thus, the whole initramfs
should be streamlined or can even be skipped. In that case, a direct boot into the final rootfs is executed.

Number Activity Description

1 Receive control The kernel has mounted the disk image from the RAM and starts /init.

2 Mount basics Mount basic file systems such as proc and sys.

3 Seek rootfs Read and interpret config files, environment variables, partition metadata, and/or
other storage such as EEPROM, fuses, or eMMC metadata to find the correct location
of the rootfs to be used.

4 Load drivers Depending on the storage hardware, drivers need to be loaded as modules to the
Linux kernel. For example, modules to support NVMe or USB might need to be
loaded. After this step, step 3 might need to be repeated.

5 Setup crypto
layers

The setup and configuration of the Linux cryptography layer to enable integrity and/
or confidentiality protection on the rootfs follows. In this step, key handling using a
TPM or other high security module takes place. dm-crypt, dm-integrity, and/or dm-
verity are set up at this time.

6 Check file
system

If the file system is detected as unclean, a check takes place now.

7 Mount the
rootfs

The root file system (rootfs) is now mounted and its content becomes available.

8 Check content At this point it is possible to selectively check files in the rootfs for integrity.

9 Switch rootfs Make the new rootfs the real one and remove the RAM rootfs (e.g., with chroot��,
pivot_root(), or switch_root).

10 Start init Pass control to the init daemon of the new rootfs, e.g., /sbin/init.

5

crinit and cominit white paper crinit and cominit white paper

If requirements such as cryptographic protection of the rootfs are involved and/or hardware designs are complex,
an initramfs is often the only choice for an effective implementation. In many cases generic shell scripts are found
to implement the abovementioned steps with the help of busybox and other toolings.

However, in embedded systems shell scripts might be banned due to security and boot-time concerns. If hardware
is invariant, no dynamic seeking of configuration is needed, and the tools in the initramfs can directly follow the
given setup procedure without losing time.

2. cominit

The open-source tool cominit is intended to be used in such a scenario. It is small but flexible, does not depend
on any shell tooling, and allows to set up integrity-protected root file systems using dm-verity and dm-integrity.
As the traditional last step, cominit passes control over to the init executable found in the root file system. This
can be systemd or any other init daemon. Independent of the tool used the init daemon is referred to as “init”.

Being started by the kernel, “init” has no parent process and always receives the lowest possible pid of “1”. Init
is not allowed to terminate in any case. If that happens – for whatever reason – the kernel panics, leading to a
system crash that can only be resolved by rebooting. The duty of the system daemon is to start further tools and
daemons, to load driver modules, and to configure interfaces, e.g., the network. All these steps are performed
directly, or the system daemon delegates it to other programs.

3. crinit

crinit is a system daemon or init daemon that receives control after the root file system has been mounted and
is part of it. Hence, crinit plays the role of “init”. Depending on the selected system design, the root file system is
either mounted by the kernel or by the tooling within the initramfs, as mentioned above. However, it is basically
irrelevant for the init daemon how the root file system was mounted.

crinit does the following steps during startup and runtime:

crinit tries to handle all steps from 3 on in parallel if dependencies allow this.

Number Activity Description

1 Read config Read the configuration files.

2 Verify config Verify the configuration files using cryptographic functions and keys.

3 Start tasks Start all configured tasks in parallel that do not depend on each other.

4 Start tasks Start configured tasks that have dependencies as soon as all dependencies are
fulfilled.

5 Handle events In case a task has finished its init procedure or has terminated, the event is handled
according to the config.

6 Listen to IPC Listen to commands from the IPC interface and handle it.

6

crinit and cominit white paper

Tasks

crinit and other init daemons use the term “tasks”, sometimes also referred to as “services”.
The following services can be fulfilled by a task:

•	 Start of a program that does init work and terminates afterwards, e.g., tool to adjust the system time once.
•	 Start of a program that keeps running and waits for interaction on its interface, e.g., a webserver daemon.
•	 Loading of a kernel module to add driver functionality.
•	 Mounting of file systems.
•	 Starting of a program that maintains interfaces, e.g., a network manager.

After crinit has finished to start all tasks, and no further task is left to be started, the system could be interpreted
as being in the state of 'normal operation'.

crinit has no status of 'normal operation' and the like, it just stops starting new tasks if none is left. The system
designer can freely define this as 'normal operation' or run level 6. crinit does not define nor need such stage
definitions. During the phase of normal operation crinit just proceeds with its activity of observing the tasks and
their dependencies. In case a task changes its state, crinit will react accordingly. For example, if configured, crinit
will restart a task that has unexpectedly terminated.

Being responsible to start up the system, crinit is naturally also in charge of shutting down the system. Unlike the
startup, the shutdown is straightforward and disregards any dependency. crinit just sends a signal to all processes
to request them to come to a clean end. After a defined time (called grace period), crinit requests the kernel to
terminate all processes and shortly after that crinit will request the kernel either to reboot or to power off the
hardware.

Features

crinit orders all tasks according to the dependencies. Tasks can depend on other tasks, which in turn can again
depend on tasks. This chain of dependencies forms a directed acyclic graph (dag) that crinit follows. It starts all
tasks that have satisfied dependencies without interruption. Following this, all tasks that have no dependencies
are started by crinit as soon as possible, e.g., right after boot up. The start of tasks can lead to the fulfillment of
dependencies and in turn cause the start of further tasks. But not only the start, also termination or fail of a task
can fulfill dependencies leading to the start of tasks that depend on this kind of events.

The following list gives all events that a crinit-task might depend on:

Dependency type Description

<task>:fail The task did terminate with an error code.

<task>:wait The task did terminate and reports success.

<task>:wait-notified The task has notified crinit via sd_notify that it is now ready to be used.

<task>:spawn The task was just started.

@provided:<feature> A task was started that explicitly provides the feature.

@elos:<filter> An elos event was received as defined in the filter.

7

crinit and cominit white paper

In addition to the dependencies the command of the task to be started needs to be configured. This is done via the
configuration key COMMAND. In the example case of a web server this config key contains the executable file of
the web server, the dependencies define a relationship to the network. The resulting crinit file would look like this:

NAME = webserver
COMMAND = /bin/webserverd
DEPENDS = @provided:network

This above file lets the webserver wait until the network is provided. The following crinit files defines the requested
network-dependency:

In case static IP shall be used:

NAME = static-netcfg
COMMAND = /bin/ip addr add 192.168.2.3/24 dev eth0
PROVIDES = ipv4_static:wait network:wait

Or in case of using a dhcp client:

NAME = dyn-netcfg
COMMAND = /sbin/dhcp-client eth0
PROVIDES = ipv4_dyn:wait network:wait

No matter how the network was configured, either static or dynamic, the dependency “network:wait” is provided
as the result of logical-or operation. Hence this dependency can be used to let services such as the webserver
depend on a configured network, independent of the used technology.

It is possible to leave out the COMMAND. In that case the task just forwards the dependencies as defined. This
allows for defining dependency groups or meta tasks that organize tasks into a more abstract dependency,
allowing for a cleaner system design.
This example shows grouping of servers to an abstract all_services dependencies.

NAME = all_services
COMMAND = (none)
DEPENDS = webserver:spawn database:spawn mqtt:spawn

Any task that depends on all three is now simpler to define as is just needs to depend on all_services.
If needed, for a more traditional Unix design this concept can be used to define run levels.

crinit and elos

Each dependency event of crinit can be reported to elos1, in order to be used for further event processing. This
allows crinit to be an event input to elos. As shown before, crinit can also be a receiver of events from elos and
trigger starting of tasks that depend on events. Hence crinit has an optional full duplex connection to elos. crinit
does not depend on elos.

1	 elos is free and opensource software and available here: https://github.com/Elektrobit/elos

8

crinit and cominit white paper

4. Shell-free and secured startup

The startup is a critical phase from a security perspective. If important tasks are not started or if unintended
tasks are initialized the overall security might be completely compromised. But also manipulated parameters of
tasks can put a system into an insecure state.

As shell scripts and any other interpreter-based program (e.g., python or perl) are easier to manipulate than
binaries, it is mandatory not to have any interpreter on such secured systems. This results in the fact that traditional
systemV inits are not usable any longer as they heavily depend on shell scripts. But crinit goes even further by
protecting its config files with cryptographic checksums. This mitigates any attacks via manipulated config files.

Signatures on config files

crinit can be forced into a higher security mode via kernel command line. If “crinit.signatures=yes“ is set,
crinit will read each file and verify it to the signature file, before following the given configuration. The signature
file is expected to be in the same directory, sharing the name with a .sig extension. crinit uses RSA-PSS (RSA-4096
with SHA256) and a public key from the Linux kernel keyring. This key needs to be loaded as “crinit root” by, for
example, cominit to the @user keyring of the root user.
In case of a verification failure crinit rejects to use that modified file.

Environment for each task

As is usual with today’s startup daemons crinit shall allow to define an environment for the tasks. crinit tries to
solve this using pragmatic compromise by offering many but not all possible ways of environment definition. This
way crinit does not support starting containers in a fully enclosed environment. It is intended to support following
definitions:

•	 Unix users and groups
•	 Capabilities
•	 cgroups (controllers: CPU, CPU set, memory, io, pids)
•	 seccomp
•	 Standard IO redirection
•	 Environment variables

9

crinit and cominit white paper

5. crinit at runtime

During runtime of a Linux system, the startup daemon plays a reduced role and steps into action only in case a
task terminates. When it comes to shutdown requests, the init daemon has the duty to notify and finally terminate
all processes before requesting the kernel to flush all file systems and instructing the appropriate kernel driver to
power off.

crinit can be interacted with via its API and a command line tool that allows easy handling from the shell during
debugging, development, and testing of Linux systems.

Following commands are available:
All these commands are additionally available in the crinit library “libcrinit-client.so” for use in C/C++ or
similar environments.

With these tool-set, crinit is able to startup and control Linux systems, but with a little extra information from the
processes crinit fulfills its purpose even more effectively. This is best explained on an example: “A” depends on
“B”. But “B” is not ready to serve “A” before finishing its own initialization. Hence, “A” should be started after “B” has
finished to initialize and is ready to serve “A”.

For crinit it would be very helpful to know: When is a process ready to serve?

Command Activity Description

crinit-ctl addtask Add new or
overwrite
existing tasks.

Allows to add a new task defined in provided file; if dependencies
are fulfilled, the task is started, otherwise it waits.

crinit-ctl addseries Add a full series
of tasks.

Allows to add series files of tasks, each task has its own file and is
referenced from the series file.

crinit-ctl enable |
disable

Enable/disable
tasks.

Sets or unsets a special dependency (e.g., “@ctl:enable”) to allow
dependent tasks to start. Can be used to model manual entering
of run levels.

crinit-ctl stop |
kill | restart

Terminate, kill,
and restart
tasks.

Sends kill or terminate signals to the task, or requests to restart it.

crinit-ctl status |
list

Get status. Gets the status of all or just the specified tasks.

crinit-ctl reboot |
poweroff

Reboot or
shutdown of the
whole system.

Requests all processes to shut down and requests the kernel to
reboot or power off.

10

crinit and cominit white paper

When is a process ready to serve?

Basically, each software has three stages of operation:

1.	 Initialization or startup
2.	 Normal operation or running
3.	 Cleanup, flushing, and shutdown of process

Most software products will subdivide these into further small chunks, but these three can be applied to almost
any software. During the startup phase the software reads its configuration and initializes its internal structures.
During this time it cannot yet serve its IPC interfaces (e.g., ports are not yet open or cannot be serviced). Though
this phase is designed to be as short as possible, it can still consume a considerable amount of time. After this the
process is ready and changes over to the normal operation or running state, see Figure 2 below. For the outside
world, this state change is not easy to detect, hence the “sd_notify” notification mechanism was introduced2. crinit
uses this interface to receive the startup notification.

The process just needs to call “sd_notify(0, "READY=1");” and crinit is made aware that the process has now
finished its startup and is ready to serve. Following that, any dependency of type <name>:wait-notified is
now fulfilled and crinit starts them right away. These notifications avoid any polling-based solutions that waste
time and CPU cycles. Further features of “sd_notify” are not implemented by crinit in favor of keeping it small and
simple.

Task 1

Running
Initing
Stop

Running
Initing
Stop

Running
Initing
Stop

0 100 200 300 400 450

Operating

start

start

start

ready

ready

stopcrinit

Task 2

Task 3

Figure 2: Timing diagram of tasks and events

2	 https://www.freedesktop.org/software/systemd/man/latest/sd_notify.html

11

crinit and cominit white paper

Andreas Zdziarstek
emlix GmbH

Andreas Zdziarstek is a system engineer at emlix GmbH. He works primarily on
embedded Linux software, developing bespoke solutions for a range of use cases
in the automotive area, focusing on safety, reliability, and availability.

About the authors

Thomas Brinker
emlix GmbH

Thomas Brinker is a Senior Systems Engineer and Project Manager at emlix
GmbH. He is an architect for secured embedded Linux systems in the automo-
tive, medical, industrial, and consumer device fields, performing requirements
engineering and design throughout the entire product life cycle.

6. Conclusion

With the features presented here, crinit is a lightweight and feature-rich startup daemon ready to be used in
embedded systems and other function-focused Linux systems. The learning curve to integrate Linux systems with
crinit is not steep due to its focused feature set and completeness of documentation.

The software cominit is intended to be used in an initial RAM disk-based system to do basic setup steps of a Linux
system during bootup. It finishes these boot-time-critical operations in a secure way without wasting time in hot-
plug detection and unneeded device reading and seeking.

The enclosed tests for unit and integration level of both tools support further development by allowing for easy
assurance of a minimum quality level. crinit and cominit are free and open-source software (FOSS) and licensed
under MIT license, they are available at GitHub:

https://github.com/Elektrobit/crinit
https://github.com/Elektrobit/cominit

About Elektrobit

Elektrobit is an award-winning and visionary global vendor of
embedded and connected software products and services for the
automotive industry. A leader in automotive software with over
35 years of serving the industry, Elektrobit’s software powers over
five billion devices in more than 600 million vehicles and offers
flexible, innovative solutions for car infrastructure software, con-
nectivity & security, automated driving and related tools, and user
experience. Elektrobit is a wholly-owned, independently-operated
subsidiary of Continental.

For more information, visit us at elektrobit.com

Elektrobit Automotive GmbH
Am Wolfsmantel 46
91058 Erlangen, Germany

Phone: +49 9131 7701 0
Fax: +49 9131 7701 6333

sales@elektrobit.com

www.elektrobit.com

crinit and cominit white paper

http://elektrobit.com
mailto:sales%40elektrobit.com?subject=
http://www.elektrobit.com

